Устойчивость объектов экономики в чрезвычайных ситуациях. устойчивость объектов экономики в условиях

Понятие об устойчивости объектов экономики в чрезвычайных ситуациях

Организации (объекты экономики) в пределах своих полномочий должны проводить мероприятия по поддержанию своего устойчивого функционирования, как в военное, так и в мирное время.

Объектом экономики называется субъект хозяйственной деятельности, производящий экономический продукт (результат человеческого труда и хозяйственной деятельности) или выполняющий различного рода услуги. Экономический продукт может быть представлен в материально-вещественной или в информационной (интеллектуальной) форме.

Примерами объектов экономики являются различного рода промышленные, энергетические, транспортные, сельскохозяйственные объекты, научно-исследовательские, проектно-конструкторские, социальные учреждения , которые проектируются таким образом, чтобы их надежность и безопасность были максимально высокими. Однако в виду признания фактора «ненулевого риска» (т.е. невозможности исключить риск возникновения чрезвычайных ситуаций во всех случаях потенциальных угроз), аварии на объектах экономики все же происходят и приводят к тяжелым последствиям, наносящим ущерб объектам.

Все промышленные объекты экономики независимо от их конкретного назначения имеют много общих черт: здания и сооружения основного и вспомогательного производства, складские помещения и здания административно-хозяйственного назначения; станочное и технологическое оборудование; элементы газо-, паро-, тепло-, водо- снабжения; между собой здания соединены сетью внутреннего транспорта, связью, сетью энергоносителей и др.

Одной из основных задач руководителей объектов экономики является проведение мероприятий, направленных на сохранение и повышение устойчивости функционирования объектов в условиях чрезвычайных ситуаций.

К сожалению, термин устойчивость в высшей степени многозначен: от классической устойчивости по Ляпунову в математике до органической жесткости. Поэтому устойчивость как термин сильно перегружен и нередко его относят даже к «туманным». До сих пор этот сильно «перегруженный» термин не имеет установившегося (устойчивого) определения. Тем не менее, например, в системной живучести он хорошо идентифицируется и выделяется. Хотя и здесь он также многозначен и включает количественную, структурную, кинематическую и функциональную устойчивость (рис. 1.2).

Рис.1.2.Многозначность термина устойчивость

Устойчивость в общем случае может быть определена как свойство системы сохранять состояние равновесия или некоторого движения при воздействии на нее факторов, вызывающих определенные начальные отклонения системы, свойство сохранения состояния системы в заданной окрестности невозмущенных состояний. Если при этом со временем при произвольных начальных отклонениях отклонения становятся как угодно малыми, то имеет место асимптотическая устойчивость в целом. Существуют понятия условной, абсолютной, стохастической устойчивости и гиперустойчивости.

Известно, что устойчивость является фундаментальным качеством всех более или менее длительно существующих систем и определяет их способностьсохранять свои свойства (структуру, состояние, рабочие параметры и т.п.) в допустимых диапазонах при неблагоприятных внешних условиях, т.е. воздействии поражающих факторов ЧС мирного и военного времени.

Кроме того термин устойчивость используется в связи с тем, что в теории систем широко практикуется и применяется понятие динамической системы, которое отражает принцип причинности как одну из объективных наиболее глубоких закономерностей и лежит в основе построения математических моделей самых разнообразных реальных объектов. При этом рассматривается лишь степень стабильности, сопротивляемости, неуязвимости, сохраняемости систем к возмущающим воздействиям и используется в различных вариантах физическая, количественная, структурная, статическая, функциональная, динамическая устойчивость, устойчивость равновесия и др. Математическая теория устойчивости является основой для решения проблем регулирования и стабилизации потенциально опасных технологических процессов, проектирования противоаварийной автоматики, прогнозирования опасных явлений.

Применительно к объектам различных отраслей экономики рассматриваются два понятия:

– устойчивость объекта экономики;

– устойчивость функционирования объекта экономики.

Устойчивость объекта экономики подразумевает способность всего инженерно-технического комплекса противостоять разрушающему действию поражающих факторов.

Под устойчивостью функционирования объекта экономики понимают способность его выпускать промышленную продукцию в запланированных объеме и номенклатуре, предусмотренных планами на особый период (для непроизводственных объектов – выполнять свои функции в соответствии с предназначением), а в случае аварии (повреждения) восстанавливать производство в минимально короткие сроки.

Понятие устойчивость используют для характеристики подготовленности и способности объектов экономики к работе в мирное и военное время, т.е. устойчивость обозначает уровень стабильности технологических процессов, функционирования объектов экономики, жизнедеятельности территорий.

В 1994 г. на основе Федерального закона «О защите населения и территорий от ЧС природного и техногенного характера» сущность устойчивости функционирования предприятий (объектов экономики) в ЧС была пересмотрена и на первый план поставлена задача защиты жизни людей.

В настоящее время под устойчивостью функционированияобъекта экономики в ЧС понимается его способность предупреждать возникновение аварий и катастроф, противостоять воздействию их поражающих факторов в целях предотвращения или ограничения угрозы жизни, здоровью персонала, проживающего вблизи населения, снижения материального ущерба, а также обеспечивать восстановление нарушенного производства в минимально короткие сроки.

Устойчивость функционирования иногда называют технологической устойчивостью, так как она связана с организацией технологии работы всего объекта в целом.

В отличие от технологической устойчивости понятие физическаяустойчивость используется для оценки работы не всего объекта, а способности его отдельных элементов противостоять внешним нагрузкам в ЧС.

Таким образом, устойчивость функционирования (технологическая устойчивость) – понятие более общее, включающее не только физическую устойчивость сооружений и устройств в ЧС, но и надежность всего ком­плекса мероприятий инженерно-технического, организационного и технологического характера, обеспечивающего непрерывность процесса функционирования объекта в условиях ЧС.

Так как современный объект экономики представляет собой сложный инженерно-экономический и технический комплекс, то его устойчивость будет напрямую зависеть от устойчивости составляющих элементов.

Под инженерно-техническим комплексом (ИТК) объектов отраслей экономики следует понимать совокупность элементов, включающих здания, сооружения производственных цехов, производственный персонал и защитные сооружения для укрытия рабочих и служащих, устройства, технические средства, машины, подвижной состав, парки, монтажные площадки, складские помещения, энерго- и водоснабжение, элементы системы управления производством и другие элементы, обеспечивающие производственный процесс.

Читайте так же:  В какой налоговой получать выписку из егрюл. как можно быстро и бесплатно получить выписку из егрюл

Поскольку объекты экономики наряду с персоналом, зданиями, сооружениями, топливно-энергетическими ресурсами включают в качестве базовой составляющей технологические (технические) системы, целесообразно определить и их устойчивость.

Под устойчивостью технологической (технической) системы понимается возможность сохранения ее работоспособности в чрезвычайной ситуации.

Уменьшение вероятности возникновения чрезвычайных ситуаций, снижение возможного ущерба и потерь, быстрое возобновление производственного процесса связано с выявлением источников ЧС (возможных средств поражения), оценкой их поражающих факторов, прогнозированием возможной или выявлением создавшейся обстановки.

Прогнозирование устойчивости функционирования объектов экономики заключается во всестороннем изучении условий, выявлении и оценке обстановки, которые могут сложиться в чрезвычайных ситуациях, и в определении их влияния на производственную деятельность.

Устойчивость может выражаться количественно. Для этого используется специальный показатель – коэффициент устойчивости:

,

где Wсохр – прогнозируемые сохраняющиеся производственные мощности после воздействия поражающих факторов ЧС без учета либо с учетом потерь в результате утраты внешних связей (поставок необходимых ресурсов);Wо – производственные мощности до воздействия поражающих факторов ЧС. При этом под производственной мощностью понимается объем выпускаемой продукции в течение года.

Для объектов экономики непроизводственного назначения при определении коэффициента устойчивости вместо производственной мощности могут использоваться другие показатели, характеризующие возможности объекта по выполнению своего назначения.

Все промышленные объекты, независимо от их конкретного назначения, имеют много общих черт. Так, любой промышленный объект включает в себя наземные здания и сооружения основного и вспомогательного производства, складские помещения и здания административно-бытового назначения. В зданиях и сооружениях основного и вспомогательного производства размещается станочное и технологическое оборудование, сети газо-, тепло-, электро- и прочих видов снабжения. Между собой здания и сооружения соединены сетью внутреннего транспорта, сетью энергоносителей и системами связи и управления. На территории промышленного объекта могут быть расположены сооружения автономных систем электро- и водоснабжения, а также отдельно стоящие технологические установки и т.д. Здания и сооружения возводятся по типовым проектам из унифицированных материалов. Проекты производств выполняются по единым нормам технологического проектирования, что приводит к среднему уровню плотности застройки (обычно 30–60 %). Все это дает основание считать, что для всех промышленных объектов, независимо от профиля производства и назначения, характерны общие факторы, влияющие на устойчивость функционирования объекта и подготовку его к работе в условиях чрезвычайных ситуаций.

К общим факторам, определяющим устойчивость функционирования различных объектов экономики можно отнести:

– наличие надежной системы защиты персонала объекта от воздействия поражающих факторов, в том числе и от вторичных;

– способность элементов инженерно-технического комплекса объекта (его строений, оборудования, коммунально-энергетических сетей) противостоять в определенной степени поражающим факторам;

– надежность системы снабжения объекта всем необходимым для производственной деятельности (сырьем, топливом, комплектующими);

– надежность системы управления, оповещения и связи;

– возможность восстановить производство после разрушающего воздействия поражающих факторов.

Тема: «Исследование устойчивости функционирования объектов экономики в ЧС»

Ростовский государственный строительный университет

Кафедра пожарной безопасности и защиты в ЧС

Задание

На курсовую работу студенту

4курса, гр.ПБ-412института ИИЭС

Рыбалка Анны Владимировны

[3]

Тема: «Исследование устойчивости функционирования объектов экономики в ЧС»

Целевая установка: «Привить студентам технические навыки в организации и проведении исследования устойчивости работы промышленного объекта и технических систем в чрезвычайных ситуациях»

Вопросы, подлежащие разработке :

1. Ответы на вопросы в зависимости от учебного шифра

2. Оценка устойчивости производственных, административных и
жилых зданий к воздействию ударной волны (расчет);

3. Расчет режимов защиты производственного персонала и населения
при действиях на территории, заряженной радиоактивными веществами (определение коэффициентов «Сз» и «Сб»).

4. Оценка воздействия АХОВ (аварийных химически опасных веществ) при аварии на химически опасном объекте расположенного в радиусе воздействия зараженного облака на территорию завода.

Материалы, предъявляемые к защите:

1. Пояснительная записка общим объемом -30-40 листов

Перечень обязательной литературы:

1. Демиденко Г.П. Справочник по защите объектов народного хозяйства от ОМП;

2. Атаманюк В.Г.Гражданская оборона.

3. СниП-11-11-77* « Нормы проектирования. Защитные сооружения ГО»;

4. СниП-2.01.51-90 «Нормы проектирования инженерно-технических мероприятий ГО»;

Срок предоставления курсового проекта руководителю 20 г.

Защита курсовой работы:

1. Прогнозирование обстановки при землетрясении………………..….4-6

2. Режимы функционирования РСЧС …………………………………. 7-8

3. Декларирование безопасности потенциально опасных объектов…..9-11

4. По каким признакам городам присваиваются группы по ГО, а объектам – категории ГО………………………..……………………12-14

5. Меры безопасности при проведении АСиДНР ……………………. 15-16

6. Задача 1. Оценка радиационной обстановки на объектах народного хозяйства……………………………………………………………. 17

7. Задача 2. Оценка радиационной обстановки на объектах народногохозяйства……………………………………………………………. 18

8. Задача 3. Оценка радиационной обстановки на объектах народного хозяйства……………………………………………………………. 19

9. Задача 4. Оценка химической обстановки на объектах народного хозяйства……………………………………………………………. 20

10. Задача 5. Оценка химической обстановки на объектах народного хозяйства……………………………………………………………….21

11. Задача 6. Расчет устойчивости всех производственных зданий, к воздействию резкого повышения давления (ударной волны)……. 22

12. Задача 7. Определение режимов радиационной защиты населения, рабочих и служащих объектов и организаций в условиях радиакти-вного заражения местности………………………………………. 23

1.Прогнозирование обстановки при землетрясении

Сейсмическое районирование разного масштаба и уровня проводится на основании учета множества особенностей: геологических, в частности тектонических, сейсмологических, физических и др. Составленные и утвержденные карты обязаны учитывать все строительные организации несмотря на то, что увеличение предполагаемой силы землетрясения хотя бы на 1 балл влечет за собой многократное удорожание строительства, так как связано с необходимостью дополнительного укрепления построек.

[2]

Сейсмическое районирование территории предполагает несколько уровней от мелко- к крупномасштабным. Например, для городов или крупных промышленных предприятий составляют детальные карты микросейсмического районирования, на которых необходимо учитывать особенности геологического строения небольших участков, состав грунтов, характер их обводненности, наличие скальных выступов горных пород и их типы. Наименее благоприятными являются обводненные грунты (возникновение гидравлического удара), рыхлые суглинки, лессы, обладающие большой просадочностью. Аллювиальные равнины более опасны при землетрясении, чем выходы скальных пород. Все это надо учитывать при строительстве и проектировании зданий, гидроэлектростанций, заводов.

Читайте так же:  Конкурсное производство. конкурсная масса. формирование конкурсной массы при несостоятельности конку

Существует большое количество разнообразных предвестников землетрясений, начиная от собственно сейсмических, геофизических и кончая гидродинамическими и геохимическими. Можно проиллюстрировать их несколькими примерами. Так, сильные землетрясения в противоположность слабым в конкретном районе происходят через значительные промежутки времени, измеряемые десятками и сотнями лет, так как после разрядки напряжений необходимо время для их возрастания до новой критической величины, а скорость накопления напряжений по Г.А. Соболеву не превышает 1 кг/см2 в год. К. Касахара в 1985 году показал, что для разрушения горной породы необходимо накопить упругую энергию в 103 эрг/см3 и объем горных пород, высвобождающий энергию при землетрясении, связан прямой зависимостью с количеством этой энергии. Следовательно, чем больше магнитуда землетрясения, а соответственно и энергия, тем больше будет временной интервал между сильными землетрясениями. Данные по сейсмически активной Курило-Камчатской островной дуге позволили С.А. Федотову установить повторяемость землетрясений с магнитудой М = 7,75 через 140 ? 60 лет. Иными словами, выявляется некоторая периодичность или сейсмический цикл, позволяющий давать хотя и очень приблизительный, но долгосрочный прогноз.

Видео удалено.
Видео (кликните для воспроизведения).

Сейсмические предвестники включают рассмотрение группирования роев землетрясений; уменьшение землетрясений вблизи эпицентра будущего сильного землетрясения; миграции очагов землетрясений вдоль крупного сейсмоактивного разрыва; асейсмические скольжения по плоскости разрыва на глубине, возникающие перед будущим внезапным сдвигом; ускорение вязкого течения в

очаговой области; образование трещин и подвижек по ним в области концентрации напряжений; неоднородность строения земной коры в зоне сейсмичных разрывов. Особый интерес в качестве предвестников представляют форшоки, предваряющие, как правило, основной сейсмический удар. Однако главная непреодоленная сложность заключается в трудности распознавания настоящих форшоков на фоне рутинных сейсмических событий.

В качестве геофизических предвестников используют точные измерения деформаций и наклонов земной поверхности с помощью специальных приборов — деформаторов. Перед землетрясениями скорость деформаций резко возрастает, как это было перед землетрясением в Ниигата (Япония) в 1964 году. К предвестникам относится также изменение скоростей пробега продольных и поперечных сейсмических волн в очаговой области непосредственно перед землетрясением. Любое изменение напряженно-деформированного состояния земной коры сказывается на электрическом сопротивлении горных пород, кото-рое можно измерять при большой силе тока до глубины 20 км. То же относится и к вариациям магнитного поля, так как напряженное состояние пород влияет на колебания величины пьезомагнитного эффекта в магнитных минералах.

[1]

Довольно надежны в качестве предвестников измерения колебания уровня подземных вод, поскольку любое сжатие в горных породах приводит к повышению этого уровня в скважинах и колодцах. С помощью гидрогеодеформационного метода были сделаны успешные краткосрочные предсказания: например, в Японии в Изу-Ошиме 14 января 1978 года, в Ашхабаде перед сильным землетрясением 16 сентября 1978 года с М = 7,7. В качестве предвестников используется также изменение содержания родона в подземных водах и скважинах.

Все многообразие предвестников землетрясений неоднократно анализировалось с целью выявления общих закономерностей и устранения ошибок. Геофизик Т. Рикитаки провел статистический анализ связей длительности аномалий Т и ее амплитуды А и ожидаемой магнитуды М, выделив три класса предвестников. Для среднесрочных предвестников он получил уравнение

где а = 0,76; b = -1,83, а Т — сутки. При М = 5-7 время проявления предвестников составляет первые месяцы — первые годы.

Пути повышения устойчивости функционирования объектов экономики в ЧС

Читайте также:

  1. Агропромышленный комплекс (АПК): понятие, цели функционирования, основные сферы. Прогнозирование и планирование АПК
  2. Актуальные проблемы интеграции российской экономики в мировую
  3. Алгебраические критерии устойчивости
  4. Алгоритм Магу для определения множества внешней устойчивости.
  5. Алгоритмы функционирования систем сотовой связи
  6. АНАЛИЗ ДЕФОРМАЦИЙ СЕМЕЙНОГО ФУНКЦИОНИРОВАНИЯ
  7. Анализ запаса финансовой устойчивости (зоны безубыточности) предприятия
  8. Анализ показателей качества функционирования системы ведения путевого хозяйства
  9. Анализ равновесия между активами предприятия и источниками их формирования. Оценка финансовой устойчивости предприятия
  10. Анализ устойчивости типовых структур
  11. Анализ фин устойчивости
  12. Анализ финансовой устойчивости

Обеспечение устойчивой работы объектов экономики (ОЭ) в условиях ЧС мирного и военного времени являет­ся одной из основных задач российской системы предуп­реждения и действий в ЧС.

Под устойчивостью функционирования объекта эко­номики или другой структуры понимают способность их в чрезвычайных ситуациях противостоять воздействию поражающих факторов с целью поддержания выпуска продукции в запланированном объеме и номенклатуре; предотвращения или ограничения угрозы жизни и здо­ровья персонала, населения и материального ущерба, а также обеспечения восстановления нарушенного произ­водства в минимально короткие сроки. На устойчивость работы ОЭ в ЧС влияют следующие факторы:

— надежность защиты персонала;

— способность противостоять поражающим факторам основных производственных фондов;

— технологического оборудования, систем энерго­обеспечения, материально-технического обеспечения и сбыта;

— подготовленность к ведению спасательных и других неотложных работ (СиДНР) и работ по восстановле­нию производства, а также надежность и непрерыв­ность управления.

Перечисленные факторы определяют основные требования к устойчивому функционированию ОЭ и изло­жены в Нормах проектирования инженерно-техничес­ких мероприятий.

Оценка устойчивости ОЭ к воздействию поражаю­щих факторов различных ЧС заключается в:

— в выявлении наиболее вероятных ЧС в данном районе;

— анализе и оценке поражающих факторов ЧС;

— определении характеристик объекта экономики и его элементов;

— определении максимальных значений поражающих параметров;

— определении основных мероприятий по повышению устойчивости работы ОЭ (целесообразное повышение предела устойчивости).

Все данные по производству и поражающим факто­рам ЧС должны быть занесены в «Декларацию по безо­пасности промышленного объекта».

Главным критерием устойчивости является предел устойчивости ОЭ к параметрам поражающих факторов ЧС, а именно:

— механическим поражающим параметрам (ударная волна, высота волны прорыва, интенсивность землетрясения);

Читайте так же:  Заявление об оспаривании решения собрания кредиторов. признание решений собрания кредиторов недейств

— тепловому (световому) излучению (тепловой импульс, приводящий к воспламенению, ожогу );

— химическому заражению (пора­жающая токсическая доза);

— радиоактивному заражению (облучению)(до­пустимый уровень радиации, при котором можно работать, допустимая доза облуче­ния);

— морально-психологической устойчивости общества (время адаптации и коэффициент психоэмоци­ональной устойчивости).

После определения предела устойчивости функцио­нирования объекта намечаются и выполняются мероп­риятия по повышению его устойчивости, которые вклю­чают:

1. Предотвращение причин возникновения ЧС (отказ от потенциально опасного оборудования; совершенство­вание или перепрофилирование производства; внедре­ние новых технологий; разработка декларации безопас­ности; проверка персонала).

2. Предотвращение ЧС (внедрение блокирующих уст­ройств в системы автоматики, обеспечение безопасности).

3. Смягчение последствий ЧС (повышение качествен­ных характеристик оборудования: прочность, огнестой­кость, рациональное размещение оборудования; резер­вирование; дублирование; создание запасов; аварийная остановка производства;

4. Обеспечение защиты от возможных поражающих факторов расстоянием, ограничением времени действия, использованием экранов, средств индивидуальной и кол­лективной защиты.

Дата добавления: 2014-01-06 ; Просмотров: 1077 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Устойчивость функционирования объектов экономики в условиях ЧС

Устойчивость функционирования — это способность выполнять свои функции (продолжать работу) в чрезвычайной ситуации, а также приспособленность к восстановлению в случае повреждения. В условиях чрезвычайных ситуаций промышленные предприятия должны сохранять способность выпускать продукцию, а транспорт, средства связи линии электропередачи и прочие объекты, не производящие материальные ценности, — нормальное выполнение своих задач.

Заблаговременная защита от ЧС осуществляется с целью обеспечения максимально возможной живучести объектов защиты и привлекаемых сил и средств в условиях возникновения и развития ЧС, которые могут возникнуть на прикрываемой территории в мирное и военное время, а также своевременного прогноза опасности возникновения ЧС. Под живучестью понимается защитное свойство прикрываемой территории, характеризующее способность снизить потери населения, сил РСГО и материальный ущерб при возникновении ЧС различного характера. Живучесть достигается по двум направлениям: обеспечением устойчивости и восстановлением функционирования объектов.

Под устойчивостью объектов защиты понимается их свойство выдерживать воздействия поражающих факторов возможных ЧС и сохранять способность выполнять свои функции без восстановления. Под восстановлением понимается процесс ликвидации повреждений производственных, коммунальных, транспортных и других объектов и сетей в короткие сроки с целью обеспечения их нормального функционирования по предназначению.

Сейчас под устойчивостью функционирования организации в ЧС понимается ее способность предупреждать возникновение аварий и катастроф, противостоять воздействию их поражающих факторов в целях предотвращения или ограничения угрозы жизни, здоровью персонала, проживающего вблизи населения, снижения материального ущерба, а также обеспечивать восстановление нарушенного производства в минимально короткие сроки.

Для того чтобы объект сохранил устойчивость в условиях чрезвычайных ситуаций, проводят комплекс инженерно-технических, организационных и других мероприятий, направленных па защиту персонала от воздействия опасных и вредных факторов, возникающих при развитии чрезвычайной ситуации, а также населения, проживающего вблизи объекта. Кроме того, проводится анализ уязвимости объекта и его элементов в условиях чрезвычайных ситуаций. Разрабатываются мероприятия по повышению устойчивости объекта и его подготовке к восстановлению в случае повреждения.

На устойчивость работы объекта в условиях чрезвычайных ситуаций оказывают влияние следующие факторы:

  • — район расположения объекта;
  • — внутренняя планировка и застройка территории объекта;
  • — специфика технологического процесса (используемые вещества, энергетические характеристики оборудования, его пожаро- и взрывоопасность и др.);
  • — надежность системы управления производством и др.

Район расположения объекта определяет величину, а также вероятность воздействия поражающих факторов природного происхождения (землетрясения, наводнения, ураганы, оползни и проч.). Важное значение имеет дублирование транспортных путей и систем энергоснабжения. Существенное влияние на последствия чрезвычайных ситуаций могут оказывать метеорологические условия района.

Внутренняя планировка и плотность застройки территории объекта оказывают значительное влияние на вероятность распространения пожара, разрушения, которые может вызвать ударная волна, образующаяся при взрыве, на размеры очага поражения при выбросе в окружающую среду токсичных веществ и др. В качестве примера в табл. 4.13 показана вероятность распространения пожара в зависимости от расстояния между зданиями.

Вероятность распространения пожара

Расстояние между зданиями, м

Вероятность распространения пожара, %

Необходимо учитывать и характер застройки, окружающей объект. Так, наличие вблизи данного объекта опасных предприятий, в частности химических, может в значительной степени усугубить последствия возникшей на объекте чрезвычайной ситуации.

Следует подробно изучить специфику технологического процесса, оценить возможность взрыва оборудования (например, сосудов, работающих под давлением), основные причины возникновения пожаров, количество используемых в процессе сильнодействующих, ядовитых и радиоактивных веществ. Для повышения устойчивости объекта в чрезвычайной ситуации необходимо рассмотреть возможность изменения технологии, снижения мощности производства, а также его переключения на производство другой продукции. Необходимо разработать также способ быстрой и безаварийной остановки производства в чрезвычайных ситуациях.

Первоначально устойчивость закладывается еще на стадии проектирования здания, сооружения, промышленной установки, технологической линии. Однако с течением времени та устойчивость, которая была заложена в проект и воплощена при строительстве, начинает переставать соответствовать новым условиям. Поэтому возникает необходимость выявления слабых мест, которые появились в устойчивости с течением времени. Для этого и проводится исследование устойчивости. Делать это рекомендуется не реже одного раза в пять лет.

Главная цель исследований заключается в выявлении слабых мест во всех системах и звеньях, выработке на данной основе комплекса организационных, инженерно-технических, специальных и других мероприятий по их устранению.

Оценка устойчивости элементов объекта осуществляется, как правило, по следующим основным направлениям:

  • — вероятность возникновения чрезвычайной ситуации на самом объекте или вблизи него и как это повлияет на его жизнедеятельность;
  • — физическая устойчивость зданий и сооружений;
  • — надежность защиты персонала;
  • — устойчивость системы управления;
  • — надежность материально-технического снабжения и производственных связей;
  • — готовность объекта к восстановлению нарушенного производства.

При определении вероятности возникновения чрезвычайных ситуаций на объекте и вблизи него учитывается множество факторов, их характер и продолжительность, прогноз возможного ущерба производству, зданиям, сооружс-ниям, оборудованию, воздействие на людей, возможные потери, общее влияние чрезвычайной ситуации на функционирование объекта.

Читайте так же:  Как лучше погасить ипотеку досрочно погашение ипотечного кредита досрочно

Рассмотрим пути повышения устойчивости функционирования наиболее важных видов технических систем и объектов.

Системы водоснабжения представляют собой крупный комплекс зданий и сооружений, удаленных друг от друга на значительные расстояния. При чрезвычайных ситуациях, как правило, все элементы этой системы не могут быть выведены из строя одновременно. При проектировании системы водоснабжения необходимо предусмотреть меры их защиты в чрезвычайных ситуациях. Ответ-ственные элементы системы водоснабжения целесообразно размещать ниже поверхности земли, что повышает их устойчивость. Для города надо иметь два-три источника водоснабжения, а для промышленных магистралей (промышленного водоснабжения) — не менее двух-трех вводов от городских магистралей.

Важной является система водоотведения загрязненных (сточных) вод (система канализации). Повышение устойчивости системы канализации достигается созданием резервной сети труб, по которым может отводиться загрязненная вода при аварии основной сети. Должна быть разработана схема аварийного ВЕЛпуска сточных вод непосредственно в водоемы.

В разных чрезвычайных ситуациях системы электроснабжения (электрические сооружения и сети) могут получить различные разрушения и повреждения. Для повышения устойчивости системы электроснабжения целесообразно заменить воздушные линии электропередачи на кабельные (подземные) сети, использовать резервные сети для запитки потребителей, предусмотреть автономные резервные источники электропитания объекта.

Важно обеспечить устойчивость системы газоснабжения, так как при ее разрушении или повреждении возможно возникновение пожаров и взрывов, а также выход газа в окружающую среду, что значительно затрудняет проведение аварийно-спасательных и восстановительных работ. Основные мероприятия по увеличению устойчивости систем газоснабжения включают: сооружение подземных обводных газопроводов (бассейнов), обеспечивающих подачу газа в аварийных условиях; создание на предприятиях аварийного запаса альтернативного вида топлива; осуществление газоснабжения объекта от нескольких газопроводов; создание подземных хранилищ газа высокого давления.

В результате чрезвычайной ситуации может быть серьезно повреждена система теплоснабжения населенного пункта или предприятия, что создает серьезные трудности для их функционирования, особенно в холодный период. Основным способом повышения устойчивости внутреннего оборудования тепловых сетей является их дублирование. Необходимо также обеспечить возможность отключения поврежденных участков теплосетей без нарушения ритма теплоснабжения потребителей, а также создать системы резервного теплоснабжения.

В результате воздействия ударной волны, возникающей при взрывах различного происхождения (при аварии газопроводов, при военных действиях), могут серьезно пострадать подземные коммуникации, включая подземные переходы и транспортные сооружения (эстакады, путепроводы, мосты и др.). Основным средством повышения устойчивости рассмотренных сооружений от воздействия ударной волны является повышение прочности и жесткости конструкций.

Особое внимание следует уделять устойчивости складов и хранилищ ядовитых, пожаро- и взрывоопасных веществ в условиях чрезвычайных ситуаций. Это достигается переводом указанных материалов на хранение из наземных складов в подземные, хранением минимального количества ядовитых, ножаро-и взрывоопасных веществ, а также безостановочным использованием этих веществ при поступлении на объект, минуя склад.

Надежность материально-технического снабжения (МТС) и производственных связей обеспечивается: запасами сырья, топлива, комплектующих изделий и других материалов, обеспечивающих автономную работу объекта; наличием планов перевода производства на использование местных ресурсов.

Для повышения устойчивости работы объектов в чрезвычайных ситуациях необходимо уделять значительное внимание защите рабочих и служащих. Для этого на объектах строятся убежища и укрытия, предназначенные для защиты персонала, создается и поддерживается в постоянной готовности система оповещения рабочих и служащих объекта, а также проживающего вблизи объекта населения о возникновении чрезвычайной ситуации.

Устойчивость функционирования объектов экономики в условиях ЧС. Принципы и способы повышения устойчивости функционирования объекта экономики в ЧС

Устойчивость работы объектов экономики в ЧС определяется их способностью выполнять свои функции в этих условиях, а также приспособленностью к восстановлению в случае повреждения. В условиях ЧС промышленные предприятия должны сохранять способность выпускать продукцию, а транспорт, средства связи, линии электропередач и прочие аналогичные объекты, не производящие материальные ценности, — обеспечивать нормальное выполнение своих задач.

Для того чтобы объект сохранил устойчивость в условиях ЧС, проводят комплекс инженерно-технических, организационных и других мероприятий, направленных на защиту персонала от воздействия опасных и вредных факторов, возникающих при развитии ЧС, а также населения, проживающего вблизи объекта. Необходимо учесть возможность вторичного образования токсичных, пожароопасных, взрывоопасных систем и др. Кроме того, проводится анализ уязвимости объекта и его элементов в условиях ЧС. Разрабатываются мероприятия по повышению устойчивости объекта и его подготовке в случае повреждения к восстановлению.

С целью защиты работающих на тех предприятиях, где в процессе производства используют взрывоопасные, токсичные и радиоактивные вещества, строят убежища, а также разрабатывают специальный график работы персонала в условиях заражения вредными веществами. Должна быть подготовлена система оповещения персонала и проживающего вблизи объекта населения о возникшей ЧС. Персонал объекта должен быть обучен выполнению конкретных работ по ликвидации последствий ЧС.

На устойчивость работы объекта в условиях ЧС оказывают влияние следующие факторы: район расположения объекта; внутренняя планировка и застройка территории объекта; характеристика технологического процесса (используемые вещества, энергетические характеристики оборудования, его пожаро- и взрывоопасность и др.); надежность системы управления производством и ряд других.

Район расположения объекта определяет величину, а также вероятность воздействия поражающих факторов природного происхождения (землетрясения, наводнения, ураганы, оползни и проч.). Большое значение имеет дублирование транспортных путей и систем энергоснабжения. Так, если предприятие расположено вблизи судоходной реки, в случае разрушения железнодорожных или трубопроводных магистралей подвоз сырья или вывоз готовой продукции может осуществляться водным транспортом. Существенное влияние на последствия ЧС могут оказывать метеорологические условия района (количество выпадающих осадков, направление господствующих ветров, минимальные и максимальные температуры воздуха, рельеф местности).

Внутренняя планировка и плотность застройки территории объекта оказывают значительное влияние на вероятность распространения пожара, на разрушения, которые может вызвать ударная волна, образующаяся при взрыве, на размеры очага поражения при выбросе в окружающую среду токсичных веществ и др.

Читайте так же:  Как остановить беспредел жалоба на соседа образец написания. как написать заявление участковому на с

Необходимо учитывать и характер застройки, окружающей объект. Так, наличие вблизи объекта опасных предприятий, в частности химических, может в значительной степени усугубить последствия возникшей на объекте ЧС.

Следует подробно изучить специфику технологического процесса, оценить возможность взрыва оборудования (например, сосудов, работающих под давлением), основные причины возникновения пожаров, количество используемых в процессе сильнодействующих, ядовитых и радиоактивных веществ. Для повышения устойчивости объекта в ЧС необходимо рассмотреть возможность изменения технологии, снижения мощности производства, а также его переключение на производство другой продукции. Необходимо разработать также способ быстрой и безаварийной остановки производства в ЧС.

Большое внимание следует уделять повышению устойчивости функционирования наиболее важных видов технических систем и объектов.

Системы водоснабжения представляют собой крупный комплекс зданий и сооружений, удаленных друг от друга на значительные расстояния. При ЧС, как правило, все элементы этой системы не могут быть выведены из строя одновременно. При проектировании системы водоснабжения необходимо предусмотреть меры их защиты в ЧС. Ответственные элементы системы водоснабжения целесообразно размещать ниже поверхности земли, что повышает их устойчивость. Для города надо иметь два-три источника водоснабжения, а для промышленных магистралей (промышленного водоснабжения) — не менее двух-трех вводов от городских магистралей. Следует предусмотреть возможность ремонта данных систем без их остановки и отключения водоснабжения других потребителей.

Весьма важной является система водоотведения загрязненных (сточных) вод (система канализации). В результате ее разрушения создаются условия для развития болезней и эпидемий. Скопление сточных вод на территории объекта затрудняет проведение аварийно-спасательных и восстановительных работ. Повышение устойчивости системы канализации достигается созданием резервной сети труб, по которым может отводиться загрязненная вода при аварии основной сети. Должна быть разработана схема аварийного выпуска сточных вод непосредственно в водоемы. Насосы, используемые для перекачки загрязненной воды, комплектуются надежными источниками электропитания.

В разных ЧС электрические сооружения и сети могут получить различные разрушения и повреждения. Их наиболее уязвимыми частями являются наземные сооружения, а также воздушные линии электропередач. В современных энергосистемах применяются автоматические устройства, способные отключить поврежденные электроисточники, сохраняя работоспособность системы в целом. Для повышения устойчивости системы электроснабжения целесообразно заменить воздушные линии электропередач кабельными, использовать резервные сети для запитки потребителей, предусмотреть автономные резервные источники электропитания объекта.

Весьма важно обеспечить устойчивость системы газоснабжения, так как при ее разрушении или повреждении возможны возникновение пожаров и взрывов, а также выход газа в окружающую среду, что значительно затрудняет проведение аварийно-спасательных и восстановительных работ. Основные мероприятия по увеличению устойчивости систем газоснабжения следующие: сооружение подземных обводных газопроводов (бассейнов), обеспечивающих подачу газа в аварийных условиях; использование устройств, обеспечивающих возможность работы оборудования при пониженном давлении в газопроводах; создание на предприятиях аварийного запаса альтернативного вида топлива (угля, мазута); осуществление газоснабжения объекта от нескольких источников (газопроводов); создание подземных хранилищ газа высокого давления; использование на закольцованных системах газоснабжения отключающих устройств, установленных на распределительной сети.

В результате ЧС может быть серьезно повреждена система теплоснабжения населенного пункта или предприятия, что создает серьезные трудности для их функционирования, особенно в холодный период года. Наиболее уязвимые элементы систем теплоснабжения — теплоэлектроцентрали и районные котельные. Основным способом повышения устойчивости внутреннего оборудования тепловых сетей является их дублирование. Необходимо также обеспечить возможность отключения поврежденных участков теплосетей без нарушения ритма теплоснабжения потребителей и создать системы резервного теплоснабжения.

В результате воздействия ударной волны, возникающей при взрывах различного происхождения, могут серьезно пострадать подземные коммуникации, включая подземные переходы и транспортные сооружения (эстакады, путепроводы, мосты и др.).

Особое внимание следует уделять устойчивости складов и хранилищ ядовитых, пожаро- и взрывоопасных веществ в условиях ЧС. Это достигается переводом указанных материалов на хранение из наземных складов в подземные, хранением минимального количества ядовитых, пожаро- и взрывоопасных веществ, а также безостановочным использованием этих веществ при поступлении на объект минуя склад («работа с колес»).

Для повышения устойчивости работы объектов в ЧС необходимо уделять значительное внимание защите рабочих и служащих. Для этого на объектах строятся убежища и укрытия для персонала, создается и поддерживается в постоянной готовности система оповещения о возникновении ЧС. Персонал объекта должен знать о режиме его работы в случае возникновения ЧС, а также быть обученным выполнению конкретных работ по ликвидации очагов поражения.

Видео удалено.
Видео (кликните для воспроизведения).

Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

Источники


  1. Решетников, В.И. Экологическое право. Курс лекций; М.: Щит-М, 2011. — 331 c.

  2. Старков, О. В. Теория государства и права / О.В. Старков, И.В. Упоров. — М.: Дашков и Ко, 2012. — 372 c.

  3. ред. Никифоров, Б.С. Научно-практический комментарий уголовного кодекса РСФСР; М.: Юридическая литература; Издание 2-е, 2011. — 574 c.
  4. Марченко, М. Н. Теория государства и права / М.Н. Марченко, Е.М. Дерябина. — М.: Проспект, 2012. — 720 c.
  5. Гойко, Л.Ф. Судебные были; К.: Украина, 2012. — 208 c.
Устойчивость объектов экономики в чрезвычайных ситуациях. устойчивость объектов экономики в условиях
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here